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Introduction

In this treatise | want to pay attention to tlsisue: which minimal means are needed to
express the max. Are 12 keys per octave sufficeekpress tonal 5-limit music? And if not,
how many keys are needed per octave? And what dblmit music? And so on.

The world of keyboard music instruments is indeé&dnge world, and this has always been
that way throughout the centuries. A keyboard paraof music instruments is a rational
concept which is peculiar to human beings, whileuatic instruments in general reflect
something of nature, that is to say the animal damy. A wind instument has a similarity
with the vocal chords. Strings are comparabl&éoway crickets produce their sound. Beat
instruments resemble the heartbeat and also thesarag monkeys beat their chests.

A. Microtonality

At first sight it comes to microtonality when int@ts are smaller than the "semitone”, which
can be defined as the tempered semitone in 1Bexé the criterion is a keyboard instrument
with 12 keys per octave, apart from the tuningeysthat is applied.

But let us assume that music from the renaissaagedis played on a 31-tone organ. In this
case it is true that the 31-tone organ is a mic@tmstrument, but our perception is that this
music is not microtonal. This leads us to the midimm as a possible criterion with relation
to microtonality. Then it is obvious that we defimeisic up to and including 5-limit as non-
microtonal and from 7-limit (to infinite) as micatal. In a 7-limit music idiom we find the
diesis (36/35, 49/48, 64/63) as a micro-intervat,diso 7/6 and 8/7, and these intervals are
definitely larger than the "semitone", but not aetely playable on a 12-tone keyboard
instrument. After all, 7- limit (and 11-, 13- asd on) music can not be accurately played by
a 12-tone keyboard instrument. So, the shift igvbeh 5- and 7-limit.

Lastly, we can consider tuning systems vigmperedntervals. It is a fact that the quotient
(pure interval) / (tempered interval) is equal tmiaro-interval. Based on this given it is
possible to define any tempered tuning system eglmeicrotonal. But this is a mere
theoretical consideration that doesn't play an i@ role in musical practice.

Thus we can distinguish the following definitiorfstloe concept "microtonality":

- 1. Keyboard instruments with more than 12 keys per octave

- 2. Extension omusic idiom from (3-,) 5-limit to 7- (11-, 13- and so on) limi

- 3. All tuning systemsthatdeviatefrom just intonation, whether they are non-cyadlic

cyclic, irregular or regular.

B. Just Intonation

Definitions and deductiongtervals and mutual coherence

Pure intervals are formed by the ratio’s of frequies, which can be described by simple
whole positive numbers. From number 1 as pointepladture we are able to arrange these
whole positive numbers in a multidimensional comtim existing of vectorial directions of
prime numbers. Every direction exists of an exptiaerow of intervals, i.e. interval stacks:
(a/b)". When we assume b = 1, we achieve: (a1 d'



We are able to investigate interval relations bg-thmensional sections.
As a first plan prime number 2 on horizontal axis:

Fig. a

From number 1 using as departure number 3 is fh@viog number in this order of whole
numbers forming a new vectorial direction. Thisfaguration of numbers can also be
depicted as follows:

Fig. b

Figures a and b are depicted by a logarithmic scaleequal distance in case of involution.
Considering two triangles adjacent to each other2adimensional section (matrix) of the
infinite universe of whole numbers, as shown in éigand fig. b, we discover that the product
of the numbers on the communal side of the triamigle@qual to the product of the numbers of
the angles which are on a line perpendicular tactmemunal side. In the matrix this thesis is
valid for any pair of mutual identical trianglestivione communal side, i.e. in case of two
triangles which are explainable by a 180 degretion.

N.B.: It is also possible to consider 3-dimensia®dtions when 3 perpendicular dimensions
represent vectors of prime numbers, for exampfea)d 7. Prof. A.D. Fokker made use of
this (according to Euler); the octave is omitted &fths / fourths, major thirds / minor sixths,
minor thirds / major sixths, and the intervals tethto prime number 7 can be depicted
graphically.

The internal connections between intervals alsobeashown by the following genealogical
tree based on the octave interval, by which thesidin of intervals by arithmetic mean is
apparent.

Fig. c



There also exists a tree based on the octave, mhwlie division of the intervals by another
mean than the arithmic one can be shown.

Fig. d

The means of the intervals, thus found, we calirtaanic.

When we compare figures ¢ and d, we distinguishrtwtual mirrored patterns. In the first
case the octave is divided in subsequently fiftth faurth, and in the second case the
following order is reversed, i.e. subsequently foand fifth. For the division of other
intervals like the fifth, the fourth, etc. the sakmed of reversal is valid.

When we converge both trees, then we can concBiveeavals as being divided in two
ways, i.e. by the arithmic mean and by the harmomean. The relation of harmonic mean
and arithmic mean is also an interval. So, whenake a given interval as a starting point, we
are able to derive three more intervals from thisrval. This given is important when we
think of an imaginary construction of a generalikeglboard, which will be discussed in
section D of this treatise. This imaginary condirccan be considered as derived from a
projection of interval stacks in a logarithmic scah the planimetry of a keyboard, thus
expressing only pure intervals. In the case obittave we achieve only Pythagorean
intervals, 3-limit.

From a given interval or ratio three other intesvedn be derived. In order to define these
intervals | propose that we use already existingionlogical terms and to generalize these.
This means that, when we take for example the ecawhe interval, we define the fifth as
major and the fourth as minor, and the Pythagovdasle tone as the leading tone interval.
The same when we take any other interval as argjgroint:

interval = major . minor; leading tone = major / minor.

In mathematical formula:
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Subsequently we can occupy ourselves with the munesbncerning how many times a
leading tone interval fits within a major or a min@/hich value does the exponent of the
leading tone interval have? The inductive methe@gus an answer to our question:

rg"

This implies that, when the exponent exceeds theegdound, the result will extend the
(value of the) interval. The exponential stackshefleading tone interval and their relation to
the interval from which the leading tone intenabterived is essential to the approach of this
treatise. The amount of leading tone intervals withe interval is equal to x + (x — 1) =

2x — 1. When we take the octave (= 2/1) as a stpgoint, the leading tone interval ( = 9/8)
will appear 2 3 — 1 = 5 times within the octave, just below 6e@#hThe interval (9/8)x

' 0 and (9/8§ = ( ; in the first case smaller
than 2/1 and in the second case bigger than 2/1.

The exact way to determine the number of leading tatervals within an interval is equal to:
log interval / log leading tone interval. The rasuill extend the value of 2x - 1.

The amount of times that a Pythagorean whole tosevithin an octave is:
' ( i.e. the amount of times a Pythagorean whole tone
can be depicted within an octave in logarithmidesca

Besides the conclusion that (2x — 1) leading toervals fit into a given interval, it has to be
pointed out that the depiction of these leadingtirervals within this given interval is such
that two rows can be distinguished. After all, wienconsider the harmonic mean of an
interval, we can define it as the starting poina@bw of leading tone intervals, in which the
arithmetic mean is also included; in addition tlegibning of a given interval is starting point
of a row of leading tone intervals. Both rows ogpreach other like (roof)tiles when we
depict these as a diagram on logarithmic scalegsetton D Keyboards). Because of this we
can define the notion “row” in the scope of a phaeiry: a row is a succession of adjacent
keys which indicate leading tone intervals. All@tlsuccessions of adjacent keys are defined
as columns. Both rows and columns represent differectorial directions in the planimetry
of a keyboard.

The planimetry of a keyboard is determined by dhgse two givens alone, i.e. the number of
leading tone intervals within a given interval and adjacent parallel rows of keys, thus
forming the succession of leading tone interval®garithmic scale.

A number of planimetry’s can be derived from vasouvalues:
- x=3 octave
- X=4 major sixth
- x=5fifth

and so on.



Just Intonation keyboard concepts

It is imaginable - but not necessarily preferablel make music in just intonation by
generalized keyboards because planimetry’s baseliffenent x-values can be seen as
sections of the multidimensional continuum of mFimumbers. A planimetry with x-value 3
is based on two vectorial directions of the primienbers 2 and 3, so 3-limit music
(Pythagorean scale) can be played on a keyboatrdsttasigned in accordance with this
planimetry. The planimetry’s with x-values 3, 4 @dre sufficient for (generalized)
keyboard designs in order to express the wholeerah-limit music in just intonation. This
is valid of course when keyboards of different gdasibased on the x values 3, 4 and 5 are
played simultaneously. This issue of just intormrateyboards reminds us of the voice
harmonium of Colin Brown, the organ of Henry Wabk, and other concepts. These were
not generalized keyboards because the keys aifferedt shape, though all the keys of the
same shape and in the same pattern in these désigntogether a regularity that is
compatible with the concept of a generalized keythoBhe concept of the generalized
keyboard will be elaborated in section D. So, i jilst intonation keyboard designs of Colin
Brown, Henry Ward Poole and others it looks likerenthan two dimensions coincide in one
level, as if several generalized keyboards argrated in one design. This is valid for all just
intonation concepts like for example the Enharm@rgan of Thomas Perronet Thompson,
the Organ of Henry Liston, the pure scale harmoni@®atone scale) of Harry Partch, the
Semantic, a just intonation keyboard by Alain Démiéthe Enharmonic Pipe Organ in 7-
limit just intonation by Martin Vogel, the Wilson#oud just intonation keyboard. All these
keyboard designs are still irregular

Fig. e. Harry Partch’s 43-tone scale on the T@&axus: it looks kind of regular, but it isn't.
That is to say, this concept is not in conformitytwthe definition of a generalized keyboard
(section D: Keyboards)
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Fig. f Explanation of the pitches in Harry Partch3tone scale on the Tonal Plexus

C. From geometric mean to equal temperament

Discrimination

The ability to distinguish intervals from each atbg ear is closely interwoven with the
concept of resolution, which | will elaborate fugthin section D about keyboard designs. The
smaller the intervals are the more difficult theg to discriminate. So, we can imagine that
the number of the small intervals that are usadusical practice is limited.

Besides the fact that the smaller the interval bexothe harder it is to distinguish, there also
exists another point of view, i.e. the confusioattimight arise when 3-limit intervals are
compared with 5-limit intervals, 5-limit intervalgith 7-limit intervals, and so on.

For example the Pythagorean third compared witlpthie major third, respectively 64/81
and 64/80. The quotient of both intervals = 1,Z856,25 = 1,0125.

Another example is the augmented major sixth coetpaith the 7-limit interval 7/4. The
augmented major sixth we find by multiplying thejamasixth with the chromatic semitone, as
follows: 5/3.25/24 = 125/72 = 1,7361111. So, thetopnt of the 7/4 interval and the
augmented major sixth = 1,75/1,7361111 = 1,008.

When we augment a Pythagorean whole tone, like AfbtBe harmonic scale of C, we
achieve 9/8.25/24 = 1,171875. This interval is Bathe 7-limit interval 7/6. The difference
we find by calculating the quotient of both intdsyas follows: 1,171875/1,166666 =
1,0044648.

The differences become smaller and smaller.

There is, of course, an infinite number of theselkiof NEO’s or NEA'’s, so to speak, when
we extend music from 3-limit to 5-limit, from 5-litrto 7-limit, and so on.

Besides all this, discrimination of intervals isspible by the musical context in which
intervals play a role. When, for example, choras@ayed, we are able to conclude that pure
major thirds are meant instead of Pythagoreangshidd so on.



Mean tone

A mean tone is the geometric mean of an intervalséon as pure major thirds (5/4) are
recognized in polyphonic music, the difference lestwthe major whole tone (9/8) and the
minor whole tone (10/9) is experienced as problemBspecially for keyboard instruments.
In order to solve this problem the mean tone teampent is developed as a compromise.
Actually there exists a variety of different meand temperaments. The main idea in these
mean tone temperaments is a line of (unequal) teedddths that takes the geometric mean
of all major thirds, apart from the size of the arahird.

Equal temperament

The idea of meantones is generalized into the q@rafean equal temperament when an
octave is divided to equal steps. Any interval taw be seen as the geometric mean of
another interval.

The 31 e.t. as proposed by Huygens is close t@/theyntonic comma mean tone
temperament with regard to the pitch.

A 12 e.t. can also be seen as a meantone relatgebtament, i.e. 1/11syntonic comma
meantone temperament.

There exist e.t.’s in which the major whole ton@8) and the minor whole tones (10/9) can
be distinguished from each other, for example #laad 53 e.t. These e.t.’s are not related to
mean tone temperaments and they form a differemyfaof equal temperaments.

Comparison in cents of pure intervals with tempengervals of 12 e.t., 19 e.t., 31 e.t.
and 53 e.t. in the following list:

Octave "& ) "& )
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Fifth "& ) & *
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)) ¥
Fourth "& ) "& ' *
)
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) :
) :
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Diatonic semitone "& ) "&

)) *

)) *

)) *
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Chromatic semitone "& ) "&
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D. Keyboards

Classification of keyboard designs according toorss criteria

Difference in playability
- 3-/5-/7-limit music polyphonically playkh just intonation in 3-limit
or 12- 19- 31 e.t.; 41- 53 e.t. etc.: tuming systems based on 1 row / circle of fifths.
- 3-/5-/7-limit musianot (or at least: less) polyphonically playable: nulds of
12, such as 24 e.t., 96 e.t., etc.: imnysystems based on multiple circles of fifths.

Keyscapes
- relief, for example shaped by white and bllels on 12 e.t. repetitively placed in
linear arrangement as well as elevation pamtroduced by Bosanquet in case of
planimetric configuration of keys (generatizeeyboard)
- colour patterns in just intonation as weliragqual or unequal temperaments

Play modes in general:
- linear: 12-tone keyboard, just like flute asttier wind instruments, harp
- planimetric: generalized keyboards, just Bkeng instruments such as violin, guitar,
cymbalon

Generalized keyboard

Definition: all keys are identical in shape, and #irangement of keys follows a regular
pattern.

Consequently pure tuning is out of the questiosepkfor 3-limit for a given configuration of
keys, which is possible for x = 3.

Therefore the tunings are equal or unequal temperngldl the aim of creating polyphonic
music, which is 5-limit as a rule.

H.

Fig. g. Von Janko Keyboard

The simplest examples are button accordion andoJeeyboard, both for 12 e.t.
Bosanquet is the founder of the generalized keybfmartunings different from 12 e.t.



Generalized keyboards are suitable for

1. just intonation (to a limited extent) or

2. tuning systems that deviate from just intonatice.
- both unequal temperaments, like for exaripérckmeister,
- and equal temperaments.

In the vision of Gert Vos, who designed a microtdeyboard that can be tuned in both

31 e.t. and 53 e.t., the underlying concept ofemégalized) keyboard tuned in one equal
temperament is not a two-dimensional plane, a platry, like we have seen in section B, but
thesurface of a cylinder When we make a drawing of one octave block inemel
temperament we have a limited number of keys wfaaoim together a group like in fig. j on
page 12, fig. | on page 14, and fig. n on pageAlleen we bend such a group of keys around
a cylinder in such a way that the keys of the uppertouch the ones of the lower row in a
logical way, we achieve a continuity of (temperedg@rval stacks around a cylinder, running
continuously in their specific directions round theface of the cylinder without ending.

It is often said that equal temperaments are “cytlining systems. But this is not quite true.
In the vision of Vos there are no cycles or circtady spirals. One simple example can make
this clear to us. When we envision a row of fifthd 2 e.t., we know that this row of twelve
fifths runs through seven octaves. The row endhersame meridian where it starts, that is to
say when we envision meridians on the surfaceayfinder that run parallel with the axis of
the cylinder. In the case octaves are horizon&lparallel with a meridian on the cylinder
surface, like the Terpstra keyboard, octave blarkguxtaposed parallel with the cylinder
axis. On the Vos keyboard the octaves run in akpuhich is about similar to the Fokker
keyboard design.

Out of what is explained in section B about theumltoherence of intervals, a variety of
planimetry’s can be constructed. The propertiesagh of these planimetry’s leads us, much
to our surprise, to the combination of equal terapants suitable for each of these
planimetry’s. The specific combinations of equahperaments on each of these planimetry’s
also guarantee invariance with regard to the irgdndtervals played on the keyboard. The
finger positions will always remain the same. Oa tbntrary, one famous example of lack of
invariance is Bosanquet’s generalized keyboardydesiis design is recommended for the
same pattern of keys as suitable for both 31 ed 58 e.t., which would cause invariance to
be lost, if applied simultaneously on the samaipi&try, i.e. on the same keyboard.
Designs for generalized keyboards can be relatéuetplanimetry's as sections of the
multidimensional continuum of prime numbers foradaes 3, 4, 5 (and so on) as indicated in
section B Just Intonation. We deduce which commnatf equal temperaments is applicable
for one of the planimetry’s, in such a way that exgntioned interval to be played on a
keyboard will always be played on the same keysiHith case we speak imivariance.

For the various keyboard designs based on diffgriamimetry’s the combinations of equal
temperaments (i.e. divisions per octave) are svist

-x=2: (3,2)5,7,12,19, 31, etc.

-x=3: (5,7) 12, 19, 31, 50, etc. and also583,.

-x=4: (13,9) 22, 31,53

-x=5: (15, 19) 34, 53, etc. and also 72 ...

and so on.

10
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Fig. h Planimetry x = 3 including numerical indicats for poésible equal temperaments.

The generalized keyboard designs related to th& pknimetry are by Robert Bosanquet,
Adriaan Fokker, Anton van de Beer, Erv Wilson, &eimen Terpstra.
The equal temperaments that are applicable hewr meake possible a distinction between

the major whole tone (9/8) and the minor whole t#9). So, these groups of
temperaments we call mean tone related. This is swdrue for 12 e.t.

11
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Fig. i Terpstra keyboard: the first working protogy
The hexagonal shape of the key combinéu tive elevation plan is evident. Terpstra's
design combines features of both Erv @Wiland Robert Bosanquet.

The traditional music notation fits very well onyk@ards that are designed in conformity
with the planimetry with x-value 3. See fig. j beto

Fig. | Music notation on 31 keys per octave, sué@dbr: 1. Pythagorean scale in just
intonation, 2. Unequal temperaments like mean t&verckmeister and others, 3. Equal
temperaments that are mean tone related.

Music notation can also be extended as is propgédiriaan Fokker. In his notation system
more accidentals are introduced like half shargkleaif flats. This can be valuable for
example in case of expressing 7-limit music idiohew all kind of weird intervals will be
used. This is an area to be explored further.

12
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Fig. k Planimetry x = 4; the numbers indicate plssible e.t.’s within the major sixth.
Further deduction leads to octave diwvisi both 31 e.t. and 53 e.t.
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Fig. | Vos keyboard based on planimetry x = 4.(klg and comparable with
the plan of J.P. White for 53 e.t. ablghed in Helmholtz’ book “Sensation of tone”.

A spectacular feature of this design is the easyteaecognize the composition of a fourth
by the intervals 7/6 and 8/7, only by the way tegkare arranged. In fig. | the equal steps in
53 e.t. are shown by numbers. The fourth is 22ssfEpe 7/6 interval is 12 steps, and the
interval 8/7 is 10 steps, together forming a didsisthermore, rows of 7/6 form interval
stacks (7/6) which resemble slendro scale, and also a horiz8ftat (7/6}.

14
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The Hanson keyboard can be related to the x =rGmktry.

Fig. n Hanson keyboard with diagonal rows of chrbonsemitones, each 3 steps in 53 e.t.
Because of the 53 e.t. tuning it is obvious thatlanson keyboard can be compared with the

Vos keyboard. It is not immediately clear if thertdan keyboard may have some advantages
above the Vos keyboard. Research and experimepéiiexce) will be needed.

16



Distinguishing key colours

The differences in key colours as we are usedddyased upon tonality concepts. The white
keys on a 12 e.t. keyboard express both a majte acd a minor scale. The remaining keys
are black, though some organs or harpsichords th&ge colours exchanged. The remaining
black keys form together a pentatonic scale, whedbrs to an original 3-limit Pythagorean
tuning.

Fig. o Example of colour pattern for mean tonetegldaemperaments on Bosanquet's
keyboard design. The colours white and black intdicaspectively the sharps and the flats of
the keys belonging to the middle row of greenisyskéN.B.: Green is the (symbolic) colour
of the middle; bluish is distant and yellowish nbgr) From top to bottom 7 -5-7-5-7.
This 31-tone octave block is suitable for 12 49.e.t., 31 e.t. and eventually 43 e.t.

The most obvious solution for mean tone relatedpmaments seems to be a colour pattern

existing of a repetitive alteration of 7 — 5 - -7, etc. Colour patterns based on the matrix
model do not make sense because in mean tonedr&at@eraments there is no comma shift.

17



Fig. p Artistimpression of one octave block of the compact kayth@f Terpstra, with same
colour pattern as on fig. 0. Suitable for 12 49.e.t., 31 e.t. and 43 e.t.

Now we have to consider colour patterns for keybgdinat are designed for temperaments
that are not related to mean tone, that is to esapéeraments by which major whole tone and
minor whole tone can be distinguished from eaclerotAs long as we pursue a colour system
based on the concept of tonality we should firsptwenality for 5-limit musical intervals. As
we see in fig. g here below, diatonic scales, Inagifior and minor, harmonic scale, melodic
scale and gipsy scale will fit in there, but a demaim (see fig. r) will not! A tritone from the
tonal centre indicates modulation like a chromaémitone also does. Furthermore, when we
include the interval 81/80 to 5-limit tonality, tikeherence will be lost because of the gaps
that will appear in the matrix; so the limit appesto be the interval 25/24.

Fig. g 5-limit tonality around D as tonal centrs,rapresented in the Matrix Model. The
indication of comma shifts is omitted. Because wesaare positioned orthogonal on the plane
of this model fifths and fourths coincide just likejor thirds and minor sixths do, and so on.

18



Duodenum identity by different colours of the keps be considered in the case of
temperaments like 41 e.t. and 53 e.t. in ordergndjuish comma shifts. This solution is
applied by Siemen Terpstra in his generalized kagdbdesign for 53 e.t. which is an
alteration of the original design by Robert Bosaiduy inversion of the key pattern.

Fig. r Octave block of Terpstra's design fore53 and related temperaments. Each colour
indicates one duodenum.

The row of fifth's:
0-31- 9-40-18-497- 5-36-14—-45-23 -
1-32-10-41-19-50-28- 6 —37—15—28 —
2-33-11 -

42 -20-51-29- 7—3B— 47— 25 -
3-34-12-43-21-52-30- 8—-39-17—-28—
4-35-13-44-22- 0

19



Fig. s Octave block of Vos keyboard for 22 unedeaiperament (i.e. vedic tuning), 31 e.t.
and 53 e.t. In this four seasons colour patterrona)d minor diatonic, harmonic, melodic
and gipsy scales are included by the white keys;iwtorm three adjacent keys each time,
representing a central position in the planimélhe organisation of the coloured layers in
the matrix model from top to bottom is as follows:

black

green (spring)
white (3 rows)
brown (autumn)
black

The chromatic semitone shifts from the central od\iifths in the matrix are green (sharps)
and brown (flats). The remaining keys are blaclkoodd.

20



Fig. t Octave block of Hanson keyboard. The numbeti€ate 53 e.t.

The colour pattern as applied on the keys is basdtie same principle as on the Vos
keyboard. The white keys represent the three grallvs of fifths in the matrix model. The
green and the brown keys show the chromatic semgabifts from the middle row of fifths,
and these shifts are juxtaposed in the diagonaiiat stacks: (25/24). The remaining keys
are black, together forming a 3-limit structurditihs, fourths and Pythagorean whole tones
(9/8).

21



Comparison between keyboard designs

On the basis of criteria such as playability, coatpess, inversion (in order to recognize
intervals in a better way), several keyboard design be compared to each other. Playability
will be promoted by letting the keys, which fornetleading tone intervals, be adjacent to
each other as much as possible.

Let us compare the designs of Fokker and Terpsthae&ch other. It is clear that on the
Fokker organ adjacent keys form diatonic semitchepmatic semitone and diesis. On the
Terpstra keyboard for mean tone related temperanserch as 31 e.t. adjacent keys form
whole tone (= mean tone), diatonic semitone androhtic semitone.

Fig. u Intervals on the Terpstra keyboard

In this aspect there exists similarity betweenkiygboard of Siemen Terpstra and the
archiphone of Anton de Beer. However, there isstirttitive difference. The planimetry of de
Beer and that of Terpstra are inverse with reg@ehch other. There is a good reason for
this. A chromatic raising — in music notation iratied as a sharp — is on the planimetry of
Terpstra actual a raising, whereas a chromaticrioge- a flat in music notation — is actual a
lowering on Terpstra’s planimetry in that case.

The design of Gert Vos for 31e.t. and 53 e.t. s this property. In his design adjacent keys
form diatonic semitone, diesis and also an unusttval: 11/10 or 12/11 (a kind of three
guarter tone!). In relation to the diatonic semépthe chromatic semitone is positioned in a
comparable way as on the Fokker organ, though sevdut a chromatic semitone is not
formed by adjacent keys, rather by the keys theastll pretty close at hand.

Fig. v Intervals on the Vos keyboard
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There are several similarities between the dessgRokker and Vos, particularly the key
pattern and the diesis formed by adjacent keysarcblumns. An advantage of the Vos
keyboard is that the intervals 7/6 and 8/7 witthi@ tourth can be distinguished much easier
than on the Fokker keyboard or the Terpstra keyhoar

One of the differences is that the mean tone ie.B1s defined as the geometric mean of the
major third, whereas the geometric mean of the mimad is the first mean in 53 e.t.
Furthermore, the possibility of 22 e.t. on the Kegboard refers to the applicability of vedic
tuning, i.e. 22 shruti's per octave. The easy wawhich a harmonic scale or a gipsy scale
can be recognized in the key pattern, is connestitidthe stacks of diatonic semitones in the
planimetry. Because of the possibility of vediciig that is to say 22 unequal steps within
an octave, we can conceive this keyboard desigm dsdian" keyboard.

On Hansons keyboard adjacent keys form diatonigteam chromatic semitone and the
minor whole tone, i.e. 10/9.

Fig. w Intervals on the Hanson keyboard

The fifths, including the major thirds and minoirtls by which the fifths are composed, are
easy to find and close at hand. On the contragy7thmit related intervals are not that close
at hand. Within one octave four separate grouslicent keys form the most important
intervals!
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Resolution

The conception of “resolution” with regard to eqtexhperaments we can compare
metaphorically with watching the stars without athatelescope. With help of a telescope we
are able to distinguish more than with the naked ey

In the planimetry of a keyboard which is tuned megual temperament some intervals can be
distinguished unambiguously, and other intervals no

Examples of ambiguity in 31 e.t.: 9/8 as well 88are represented by 5 steps (mean tone
by approximation). The 3 steps which represent3,@lso represent 15/14. The diesis
represents at least 3 intervals, i.e. 36/35, 48MB64/63.

In 53 e.t., as district from 31 e.t. for exampl& 8nd 10/9 can be distinguished. In this sense
53 e.t. is not a mean tone related temperamentwBlutregard to other intervals such as the
minor third and the fourth there is actually a meama geometric mean. Though there is a
difference in this aspect between the minor third the fourth in 53 e.t.: dividing these
intervals in a major and a minor we find for thenoni third a real mean which is 7 steps, but
for the fourth we find 12 and 10 steps for respetyi the 7/6-interval and the 8/7-interval.

7/6-interval "& "& ' *
)) *
)) *

8/7-interval "& "& ' *
)) *
)) *

Further investigation could possibly show us that¢ is a better resolution when we divide
other intervals than the octave, which implies thatoctaves would deviate more and more,
but for 53 e.t. this is a negligible factor. For ¥ it should be possible to divide the major
sixth (5/3) in equal steps in order to investight®me intervals would be approximated in a
better way. This approach also could be valid fer etc.

When we consider the enlargement of the resoluiokeyboard instruments which are tuned
in an equal temperament, it is reasonable to spihad the resolution will increase as soon
as the number of steps within the octave also asa® When we prefer to restrict ourselves
to monophonic or duophonic music while playing gld@ard instrument, octave divisions
based on multiples of 12, like 24 e.t., 72 e.t.e96will be sufficient. However, octave
divisions by multiples of 12 will definitely be infficient for the performance of polyphonic
music!

Octave divisions which are suitable to the perfarogaofpolyphonicmusic on a keyboard
instrument have to be deduced from corresponddret@seen various interval complexes in
just intonation depicted in logarithmic scale. From this approaspecially 12 e.t., 19 e.t., 31
e.t. and 53 e.t. result. The development of (fde)amicrotonal polyphonic synthesizers will
contribute to the extension of the various possigd to perform “extended harmonies”
(spectral chords), modulating in 7-limit, vedic itagy, and so on.
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In the time that Christiaan Huygens lived an oetdwision in 31 equal steps was a good
solution, because mean tone temperament was the foom the 18 century however
everything was starting to change. J.S. Bach, wa® gifted by an extremely well developed
ear for music, had no preference for mean tone éeampent. This fact is an important sign of
future developments. The most important reasontti@Bl equal temperament is not that
successful until now is the fact that fifths andrtbis are less pure than in the 12 equal
temperament, which was starting to be applied gdiyesince the end of the 1&entury.

Seen in this light it is easy to understand why RIHBosanquet introduced his generalized
keyboard in 53-tone equal temperament.

Epilogue

What will be the practical use of all these micrabkeyboard designs as described and
explained here? Microtonal keyboards are an opiticmaice for 5-limit music, but the choice
of microtonal keyboards will be unavoidable forimit music. Microtonal keyboards are not
only suitable as digital instruments but also asgtinstruments like harpsichords or sitar like
applications, and even as pipe organs, thoughsridht case only in one fixed tuning system.
All keyboards that are supplied with open sourdensoe should have a display showing the
number of cents when you play two different kegszombination with arrow keys or
something like a pitch wheel, in order to changeribmber of cents for each interval that one
wishes to tune.

Towards a world of subtlety and distinction micrmbmusic instruments, especially
microtonal keyboards, can possibly play a decisdke in the exploration of new areas of
harmony.



